IGFP Jahrestagung am 3./4. März 2012 Wiesbaden

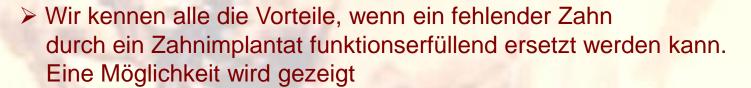
Einsparbarer Kostenfaktor oder Arbeitsgebietserweiterung? Der Zahnersatz aus PEEK beim Pferd -Theorie und Fallstudie

Dr. Klaus Bosler
Fachtierarzt für Pferde
Pferdepraxis am Ried

Peter Mielecke
Zahntechniker
Entwicklung bredent GmbH & Co KG

Expenses that can be saved or Expansion of the field of Work?

Modern dentures made of PEEK in the Horse. Theory and Case Study


Vielen Dank für die Einladung zum Thema Zahnimplantat beim Pferd

Gemeinsamer Basisvortrag eines Fallbeispiels außerhalb signifikanter Statistiken

Überlegungen zum Zahnersatz bei Pferden

Zahnersatz beim Pferd professionelle Möglichkeit nur mit Zahntechniker

beim Mensch Verwendung der Materialien Gold und Porzellan

beim Pferd Human relevante Materialien sind zu teuer

Das Material der Wahl PEEK als einphasiges Zahnimplantat

PEEK-Polymere entstehen durch Alkylierung von 4,4'-Diflourobenzophenon mit Hydrochinon-Salz

- ➤ Hochleistungskunststoff PEEK ist schwer zu bearbeiten
- ➤ Eigenschaften wie knochenähnliche Elastizität und hohe Beständigkeit

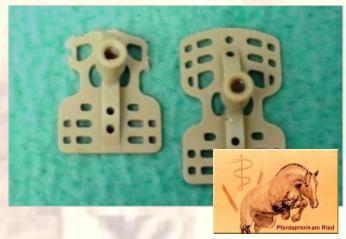
Vorteile eines Zahnimplantates

- ➤ Aufrechterhaltung der Zahnreihe und des Zahnabstandes
- Beseitigung von Futterretentionen und bakteriellen Prozessen im Zahnfach
- Verbesserung der Mahl- und Kaufunktion des Pferdegebißes
- Verbesserung der Okklusion und der Kiefergelenksfunktion
- ➤ Keine Verletzung der Schleimhaut durch scharfe Kanten
- Kein Einhaken des Antagonisten in eine Zahnlücke

Anforderungen an den Zahntechniker

- Morphologische Kenntnisse
- Verarbeitungskenntnisse über PEEK
- Kenntnisse aus der humanen Implantologie
- Hospitationserfahrung
- Anpassung von Zahnersatz an das Restzahngebiss

u.v.a.



Anforderungen an das Material

- gute Verträglichkeit des Materials
- ▶ hohe Stabilität des Implantates
- hohe Beständigkeit in der Maulhöhle
- akzeptabler Kostenfaktor für den Pferdehalter

OP und Erfahrungsbericht des ersten Pferdezahnimplantates aus PEEK

- ➤ Inhalationsnarkose mit Isofluoran
- Extraktion P4 (408) unter Röntgenkontrolle mittels eines 16 bit wireless-flatpanel-system

Anforderungen an das Instrumentarium

Cave:

- Vermeidung von Rissen im Unterkieferknochen, Frakturgefahr!
- ➤ Instrumentarium sollte ein knochenschonendes Vorgehen gewährleisten

Instrumentarium

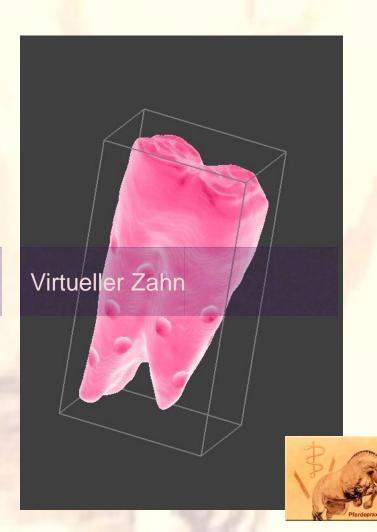
Knochenschonende Fräse für den Trepanationskanal

Ablauf der Extraktion

- Hautschnitt
- Setzen des Bohrkanals unter Röntgenkontrolle
- Setzen des Fräskanals für den Trepan unter Röntgenkontrolle
- ➤ Intraorale Mobilisierung des Zahnes mit gleichzeitiger Trepanation

Zahnersatz erfolgt am stehenden Pferd

Eine vorherige Zahnextraktion kann in Vollnarkose oder am stehenden Pferd erfolgen


Ablauf Zahntechnik

Versuch 1

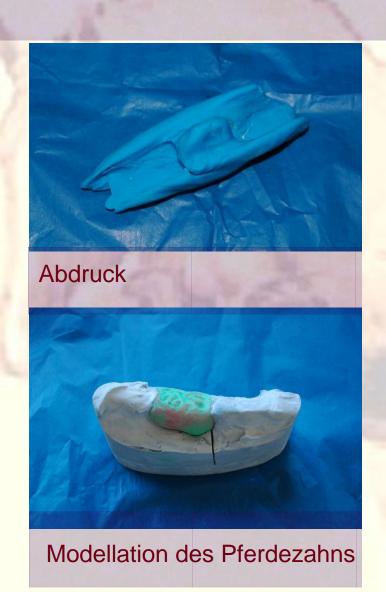
Voraussetzungen

Implantologie erster Versuch

- Anfertigung des Pferdezahnimplantats nach Vorlage des Originalzahnes
- ➤ Einsetzen des Implantat 48 Stunden nach Extraktion
- Einsetzen des Zahnes nach ca. 96 Stunden
- Verlust des Implantates nach 14 Tagen

Erklärung:

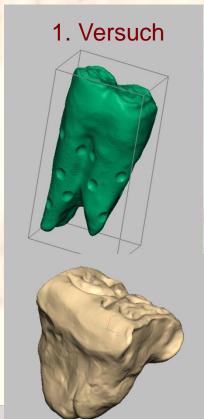
- Massive Verkleinerung des Zahnfaches und Verengung der Zahnlücke
- Keine Verwendung von Knochenzement


Abdrucknahme ca. 3 Wochen nach Extraktion

- Abdruckmaterial haptosil D
- Cave: Schnelles Aushärten des Silikons
- Integrierte Schraube zum Entfernen des Abdruckmaterials

Vorbereitende Arbeiten im Labor

Modellherstellung

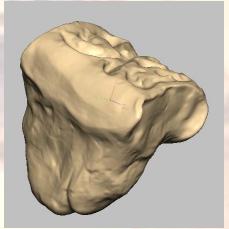


Scanfähige Modellation

Herstellungsverfahren

CAD/CAM Verfahren

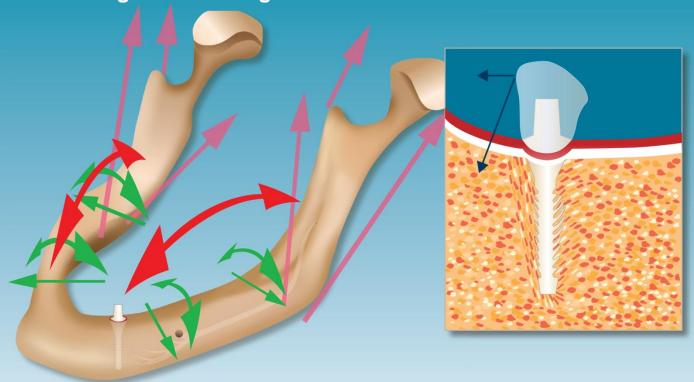
Zahnzement als Bindemittel


- Knochenzement wird beim Einsetzen von Endoprothese verwendet, um eine möglichst hohe Primärstabilität zwischen Prothesenoberfläche und dem Knochen zu schaffen.
- ➤ Knochenzement ist im Prinzip ein Zwei-Komponenten-Klebstoff, ein Gemisch aus Pulver und Flüssigkeit, wie er auch in vielen technischen Bereichen Einsatz findet.
- Chemisch handelt es sich um ein polymeres Methyl-Methacrylat (PMMA), das bei der Reaktion entsteht. (= Polymethylmethacrylat, PMMA). Beispiel Palacos® von Heraeus Kulzer

Erfolgreiche Implantation

- Überprüfung der Passung mit Kontaktfarbe zur Erkennung von Frühkontakten
- Kleine Schliffkorrekturen zur Passungsoptimierung
- ➤ Bei vollständig sauberer Maulhöhle gezielt reinigen
- Oberfläche mit leichten Mikroblutungen anfrischen
- Zement in Alveole sowie auf Zahn appliziert
- ➤ Implantat mit gleichmäßigem Druck eingesetzt
- Überschüsse des Zements müssen sofort entfernt werden
- ➤ Endgültiges Einschleifen mit handelsüblichen Maschinen möglich

LE PEEK - BIOMECHANISCHE VORTEILE



Elastizität ähnlich der des Knochens-Implant folgt inneren Bewegungungen des Knochens:

- Überlastung unmöglich

- stress-shielding-effect unmöglich

stattdessen: Stimulation des Aufbaus von Zellen durch äquivalente mechanische Spannungen in beiden Materialien; knochenähnliche Dichte bei ausreichender Härte

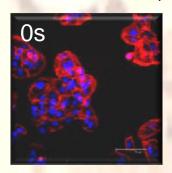
LE PEEK - HISTORIE

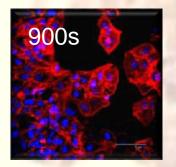
- 1981 entwickelt und patentiert durch ICI, wird es seitdem in vielen Bereichen wegen seiner überragenden physikalisch-chemischen Eigenschaften eingesetzt.
- Seit Mitte der 80er Jahre Forschungen in orthopädischer Chirurgie
- 1993 erste zahnärztliche Anwendung in Frankreich
- 1997 Zertifikation von PEEK-Optima für Langzeitimplantation [Invibio]
- Seit 1998 klinisch gesicherter Einsatz in Neurochirurgie und orthopäd. Chirurgie
- 2000 Marktanteil von PEEK in Neurochirurgie und orthopäd. Chirurgie < 2%
- 2008 Marktanteil in GB, USA, D > 50% [Invibio]
- 1993-2003 ca. 4000 Implantate aus PEEK und PEEK-Optima gesetzt

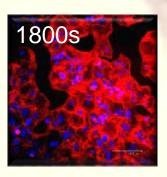
Technische Daten

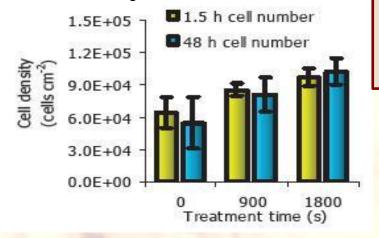
Dichte	1,3 – 1,8 g/cm ³	chemisch inert
		dielektrisch
Schmelzpunkt	334 – 348 °C	schlechter Wärmeleiter
		hohe Dimensionsstabilität
E-Modul	4 – 11,5 GPa	mechanisch hoch belastbar
Rockwellhärte M	99	ISO 10993
		ISO 13485
Flüssigkeitssättigung	0,4 - 0,5%	ASTM F2026-07a
		Langzeiterfahrung
	4 0 4045 07	
Spezifischer Widerstand	$4 - 9x10^{16} \Omega/cm$	
Oberflächenwiderstand	10 ¹⁵ Ω/cm	

unterschiedlichste Versionen erhältlich: mit


Verstärkungen, eingefärbt; ca. 30-35 gängige Varianten




Co-culture Adhesion of Bacteria and Osteoblasts to Oxygen Plasma Treated PEEK


1,2Rochford E.T.J;3Subbiahdoss G.;1Moriarty T.F.; +1Poulsson A.H.C;3van der Mei H.C.;3Busscher H.J.;1,2Richards R.G. 1AO Research Institute, CH. 2IBERS, Aberystwyth University, UK. 3University Medical Center Groningen and University of Groningen, NL.

Senior Author: sasha.poulsson@aofoundation.org

Wissenschaftliche Studien PEEK

DISCUSSION & CONCLUSIONS: The bacterial adhesion results

of this study correlate well to our previous findings for multiple strains

using an adhesion chamber and orthopedic grade PEEK-OPTIMA®

discs2. The current investigation permitted a more in depth look at the

effect of plasma treatment of PEEK on bacterial and osteoblast cell-line adhesion.

Wissenschaftliche Literatur zu PEEK

- 1. Hanasono, M., Goel, N., DeMonte, F., Calvarial Reconstruction With Polyetheretherketone Implants, Ann Plastic Surg, 62, 653-655, June 2009
- Hao L., Harris R., Customised Implants for Bone Replacement and Growth, in P. Bartolo, B. Bidanda (eds.), Bio-Materials and Prototyping Applications in Medicine., Springer 2008
- 3. Citak M, Kendoff D, Wanich T, Look V, Stuber V, Geerling J, Krettek C, Hüfner. T. The influence of metal artifacts on navigation and the reduction of artifacts by the use of polyether-ether-ketone. Comput Aided Surg. 2008 Jul;13(4):233-9.
- 4. Tetelman ED, Babbush CA. A new transitional abutment for immediate aesthetics and function. Implant Dent. 2008 Mar;17(1):51-8
- 5. Gabriel L. Converse, Weimin Yue, Ryan K. Roeder, Biomaterial 28. Processing and tensile properties of hydroxyapatite-whisker-reinforced Polyetheretherketone. (2007).
- 6. Scolozzi P, Martinez A, Jaques B. J Craniofac Surg. Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant. 200, Jan;18(1):224-8
- 7. Sekerci Z, Ugur A, Ergun R, Sanli M. Early changes in the cervical foramina area after anterior interbody fusion with polyetheretherketone (PEEK) cage containing synthetic bone particulate: a prospective study of 20 cases. PMID 16808891 2006 Jul
- 8. Petrovic, L. et al., Effect of beta-TCP filled polyetheretherketone on osteoblast cell proliferation in vitro, J. Biomed. Science 13: 41-46, 2006
- 9. Shucong Yu, Kithva Prakash Hariman, Rajendra Kumar, Philip Cheang, Khor Khiam Aik Biomaterial 26. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites (2005)
- 10.Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering.
 PMID :1593494 2005 May
- 11.Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. PMID:15965600 2005 Jul
- 12. Briem, D., Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces, J. Mat. Science: Mat. In Med 16: 671-677, 2005
- 13. J.P. FAN, C.P Tsui, C.Y. Tang. Materials Science and Engineering A 382. Modeling of the mechanical behavior of HA/PEEK biocomposite under quasi-static tensile load (2004)

Vielen Dank für Ihre Aufmerksamkeit!

Dr. Klaus Bosler
Fachtierarzt für Pferde
Dieselstraße 11
89129 Langenau
Fon 0049 7345 237566
Fax 0049 7345 237567
dr.klausbosler@t-online.de

Peter Mielecke
Zahntechniker Entwicklung
Weissenhorner Straße 2
89250 Witzighausen
0049 7309 872390
0049 7309 87224
peter.mielecke@bredent.com

